Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 11: e109439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078294

RESUMO

Tens of millions of images from biological collections have become available online over the last two decades. In parallel, there has been a dramatic increase in the capabilities of image analysis technologies, especially those involving machine learning and computer vision. While image analysis has become mainstream in consumer applications, it is still used only on an artisanal basis in the biological collections community, largely because the image corpora are dispersed. Yet, there is massive untapped potential for novel applications and research if images of collection objects could be made accessible in a single corpus. In this paper, we make the case for infrastructure that could support image analysis of collection objects. We show that such infrastructure is entirely feasible and well worth investing in.

2.
Sci Data ; 10(1): 419, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369663

RESUMO

Commonly used data citation practices rely on unverifiable retrieval methods which are susceptible to content drift, which occurs when the data associated with an identifier have been allowed to change. Based on our earlier work on reliable dataset identifiers, we propose signed citations, i.e., customary data citations extended to also include a standards-based, verifiable, unique, and fixed-length digital content signature. We show that content signatures enable independent verification of the cited content and can improve the persistence of the citation. Because content signatures are location- and storage-medium-agnostic, cited data can be copied to new locations to ensure their persistence across current and future storage media and data networks. As a result, content signatures can be leveraged to help scalably store, locate, access, and independently verify content across new and existing data infrastructures. Content signatures can also be embedded inside content to create robust, distributed knowledge graphs that can be cited using a single signed citation. We describe applications of signed citations to solve real-world data collection, identification, and citation challenges.

3.
Lancet Planet Health ; 5(10): e746-e750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562356

RESUMO

Connecting basic data about bats and other potential hosts of SARS-CoV-2 with their ecological context is crucial to the understanding of the emergence and spread of the virus. However, when lockdowns in many countries started in March, 2020, the world's bat experts were locked out of their research laboratories, which in turn impeded access to large volumes of offline ecological and taxonomic data. Pandemic lockdowns have brought to attention the long-standing problem of so-called biological dark data: data that are published, but disconnected from digital knowledge resources and thus unavailable for high-throughput analysis. Knowledge of host-to-virus ecological interactions will be biased until this challenge is addressed. In this Viewpoint, we outline two viable solutions: first, in the short term, to interconnect published data about host organisms, viruses, and other pathogens; and second, to shift the publishing framework beyond unstructured text (the so-called PDF prison) to labelled networks of digital knowledge. As the indexing system for biodiversity data, biological taxonomy is foundational to both solutions. Building digitally connected knowledge graphs of host-pathogen interactions will establish the agility needed to quickly identify reservoir hosts of novel zoonoses, allow for more robust predictions of emergence, and thereby strengthen human and planetary health systems.


Assuntos
COVID-19 , Interações entre Hospedeiro e Microrganismos , Armazenamento e Recuperação da Informação , Animais , COVID-19/epidemiologia , COVID-19/virologia , Humanos , SARS-CoV-2 , Zoonoses
4.
Biodivers Data J ; 9: e65371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168517

RESUMO

Domestic and captive animals and cultivated plants should be recognised as integral components in contemporary ecosystems. They interact with wild organisms through such mechanisms as hybridization, predation, herbivory, competition and disease transmission and, in many cases, define ecosystem properties. Nevertheless, it is widespread practice for data on domestic, captive and cultivated organisms to be excluded from biodiversity repositories, such as natural history collections. Furthermore, there is a lack of integration of data collected about biodiversity in disciplines, such as agriculture, veterinary science, epidemiology and invasion science. Discipline-specific data are often intentionally excluded from integrative databases in order to maintain the "purity" of data on natural processes. Rather than being beneficial, we argue that this practise of data exclusivity greatly limits the utility of discipline-specific data for applications ranging from agricultural pest management to invasion biology, infectious disease prevention and community ecology. This problem can be resolved by data providers using standards to indicate whether the observed organism is of wild or domestic origin and by integrating their data with other biodiversity data (e.g. in the Global Biodiversity Information Facility). Doing so will enable efforts to integrate the full panorama of biodiversity knowledge across related disciplines to tackle pressing societal questions.

6.
Nat Ecol Evol ; 4(3): 294-303, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066887

RESUMO

Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges.


Assuntos
Biodiversidade , Ecologia , Evolução Biológica , Fenótipo , Pesquisa
7.
PeerJ Comput Sci ; 4: e164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33816817

RESUMO

Biodiversity information is made available through numerous databases that each have their own data models, web services, and data types. Combining data across databases leads to new insights, but is not easy because each database uses its own system of identifiers. In the absence of stable and interoperable identifiers, databases are often linked using taxonomic names. This labor intensive, error prone, and lengthy process relies on accessible versions of nomenclatural authorities and fuzzy-matching algorithms. To approach the challenge of linking diverse data, more than technology is needed. New social collaborations like the Global Unified Open Data Architecture (GUODA) that combines skills from diverse groups of computer engineers from iDigBio, server resources from the Advanced Computing and Information Systems (ACIS) Lab, global-scale data presentation from EOL, and independent developers and researchers are what is needed to make concrete progress on finding relationships between biodiversity datasets. This paper will discuss a technical solution developed by the GUODA collaboration for faster linking across databases with a use case linking Wikidata and the Global Biotic Interactions database (GloBI). The GUODA infrastructure is a 12-node, high performance computing cluster made up of about 192 threads with 12 TB of storage and 288 GB memory. Using GUODA, 20 GB of compressed JSON from Wikidata was processed and linked to GloBI in about 10-11 min. Instead of comparing name strings or relying on a single identifier, Wikidata and GloBI were linked by comparing graphs of biodiversity identifiers external to each system. This method resulted in adding 119,957 Wikidata links in GloBI, an increase of 13.7% of all outgoing name links in GloBI. Wikidata and GloBI were compared to Open Tree of Life Reference Taxonomy to examine consistency and coverage. The process of parsing Wikidata, Open Tree of Life Reference Taxonomy and GloBI archives and calculating consistency metrics was done in minutes on the GUODA platform. As a model collaboration, GUODA has the potential to revolutionize biodiversity science by bringing diverse technically minded people together with high performance computing resources that are accessible from a laptop or desktop. However, participating in such a collaboration still requires basic programming skills.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...